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PROPAGATION OF ELASTIC WAVES IN A ROD IN A LONGITUDINAL MAGNETIC FIELD
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ABSTRACT: The propagationof harmonic waves in discussed for an
ideally conducting continuous elastic cylindrical rod within an ideally
conducting cylindrical rube. The annulus contains a steady homo-
geneous longitudinal magnetic field. The dispersion equation is de-
rived. The case of bending vibrations is considered.

1. General. The rod,with radius g, lies in a tube of inside
radius b, the field being of strength H. Then H =10, 0, H} in the cy-
lindrical coordinate system #, ¢, z. There is no field within the rod.
The magnetic field then exerts a pressure on the rod

p=VYH/n , (1. 1)
The equations for equilibrium give

o °
Sy =0 =

— g H?*[m . (1.2

Consider the propagation of harmonic waves such that the dis-
placement is described by the vector

u="U(r) oF (ot+votkz)
Ur)y={U@), V(r), W()}. (1.3)

The total displacement vector is then u' =’ + u. The ° denotes the
equilibrium value, while the prime denotes the perturbed value,
and the quantity without a superscript denotes the small change caused
by the perturbation,

The equations of motion are satisfied by the following expressions
for the amplitude of the displacement vector [1]:

aJ, (or) aJ, (@r) J,(Br)
U(r)= ar -+ Bk ar Cv - ’
J, (@r) J,(Br) dJ, (Br)
V(r) = div—/— 4 Bikv T+ i
W (r) = AilJ, (ar)— Big2J, (3r),
. pw? . POt
o=y — k2, [32—}JL — k2 (1. 4)

in which A, B, and C are arbitrary constants. Since there is initially
no field within the rod, which is ideally conducting, there is no
field within the deformed rod.

We put the perturbed magnetic field outside the rod as H' = H +
+h, in which h is a small perturbation produced by the vibration
of the rod. As div H' = 0 and rot H' = 0 in the annulus, we may put
h=—V¥, in which the function¥ satisfies Laplace’s equation A¥ = 0
and so is sought in the form

- 'llJ (r) ei (wl+votkz) .
The resnlt is

¥ (r) = Fil, (kr) + GiK, (kr), (1. 5

in which F and G are arbitrary constants and I(kr) and Ky(kr) are
modified Bessel functions.

The followmg boundary conditions apply at the perturbed surface
S’ of the rod and at the surface of the tube, as these are ideally
conducting: the normal component of H' is zero {21, and the stresses
i3 within the rod are related to the magnetic pressure p’ = H'2/8n
at the surface by

H-n'=0, 3017 n' /a4 Gi;’"j‘ =0on§

H=0 for r=b; i,j=r, 09,z (1. 6)

in which n' is the exterior normal to the perturbed surface and nj are

its components; for the normal n' we can use the approximate form-
ula

n’ =n° — Vu,,
in which uy is a function only of the coordinates ¢ and z on §°. On
S°
H = B — V [Fil, (kr) + GiE, (kr)] ¢! (oFvesks),

H? _H* H ;
B2 = g T o BRI, (kr) + GK, (kr)] ¢t (@tverkz)

(r=a). (1.7)

We substitute (1. 7) into (1. 6), expressthe Ui'j via (1.4), and use
(1.2) to get
U (r) H+F1 (kr} +GK (kr) =0,

H .
T FIFL(kr) 4 GEK, (kr)] ¢} 1ve+k2) +6,, =0

s, =0,

o Ys H2iku, /R—s,, =0 (r=a),

FI) (kb) 4 GK, (kb)=0. (1.8)
The primes in (1. 8) denote derivatives with respect to the argu-

ments of the functions taken at r = a. Then (1. 4) allows us to put
(1.8) as

A B Cc F G
g+ ba b s e Ty =

(=1, 2, 3, 4 5, E— Young's modulus (1.9)

The elements of the determinant [b | of system (1.9) in the un-
knowns A/d?, B/a®, C/d?, F/a(8vE)/, G/a(81rE)1/2 take the form

H ’ H ’
by = _Vﬁaa‘]v ((la), b1z = .V—S—RE kaBaJ, (Ba)v

bm = Iv' (/ca), b15 = Kv' (ka),

by = v, (80),
by = 0aJ, () -+ i:azkz (‘%: (1+e)— 1.) - Vz] Iy (aa),
bue = kaBaJ (Ba) + ka (B2az — v2) J, (Ba),
bis = v (7, (Ba) — BaJ ., (Ba)),

2H (1

by =— V(8—+8) akl, (ka),
2H (1 4 &)

bog = ~— —"_‘*,_..—SnE aka (ka),

by = v[aat) (ae) —J (2a)],
by = vka [BaJ,’ (Ba) — J, (Ba)],
— 12 B%?) J, (Ba) — BaJ,’ (Ba),

bgg = bgs == bag = bys =0,

bag = ('v2

H?2

by = (8:111 prn e) kaval )’ (aa),
H? 1

b= (2 = 57 ) vee B,

e Kea? Ba2
ba = (g he — 59 + 50T 2)8e, B)

bn=bsp=Dbss =0, byg=1(kb), bs=K,(kb), (1.10)

in which & is Poisson’s ratio.
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2. Dispersion equation. The determinant of (1. 9) with the ele~-
ments of (1, 10) is equated to zero to give the dispersion equation

[550=10 (2.1)
We put
ata? = 2% (12 (1 + e)(1 — 2e){1 — &)-! — 1) = X2,
=1 aE, =201+ —1)=7

¥ = p0® [ KE, z = ka;
then the elements of (2. 1) take the form

bu = hXJv' (X), 1712 = hlf"v’ (Y), bm = h'\’]V (Y),

be=1I1,(®), bs=K, (@),
ba = XJ, (X) 4 [22 (4 (1 -+ &) — 1) —v2] J, (X),
baa=YJ, (Y) + (Y2 — %) J, (¥),
bs=v[J, ([3a)-—YJv' (Ba)l, boy = —2h (1 +e)zl, (%),
b= —2k(1 +8) oK, (z), bu=v[XJ/ (X)—JT,(X)],
byg = (v* =3 YR J (Y)—-YJ(Y),
b = V[YT'(Y) — T, ()], baa=bss =0,

bg = (B2 — 11 + ) XJ, (X),

1
bia = (12 + yz—m)wv' v),

bgg = ( 2_2—(11—1——85\) v/, (YY),

by = bss =0, bsy =bsg =bs3 =10,

bsa =1, (kb), bss ==K, (kb). (2.2)

We expand the determinant of (2. 1) with the elements of (2. 2)
with respect to the elements in the last two columns to convert
(2.1) 10

Loy 1] 0y 7 + 202 (1 +2) 2%, = 0
an = XJ, (X) - [22 (g2 (1 + &) — 1) — v2] J, (X),
a=YJ, (Y)+ (Y2 —v2)J (¥),
ap=v[J, (Y)—YJ, (¥},
e = ey =v [XJ,(X) —J, (X)),

i, i=1,223), (2.3

o1 = agn = (B2 — (1 &)™) X7, (X),
Coap— Qg — V [YJv' (Y) — Jv (Y)],

con ==z = (v2— 1/ Y2) J, (V) — ¥,/ (Y),
1
Cop = ag = (h2 4yt m) YJ,)(Y),

1
Cg3 == O33 = (h2—2(1—+s—)> vJ,(Y),

e =hXJ(X), cn=hYJ (Y), ecn=hv],(Y),

K, (ka) I, (kb) — K,/ (kB) I, (ka)
B = WK, () 17 (b0 — K, (Rb) I, (ka)] *

2.4

3, Bending vibrations. We put v = 1 in (2. 3) and (2. 4) 1o get the
dispersion equation, reducing (2, 3) by the commeon factor XJ;'(X)
YI,'(Y)I(Y),

by |1 dgy |+ 2h2 (4 + &) 228 = 0 4,7i=1,2,8, (3D

bp=1-4[22(y2(1 +&) — 1) —1]e:(X),
=14+ (Y2 —1)g. (¥), bs=1—1/9:(Y),
by = dy = 1 — ¢y (X), byy = dgg = 1 — ¢, (¥},
byg = dyg = 1 — oY —1 /1 (Y),
by =dsay =h?—1/(1 + ¢,
bp=dp=h 4y — 1/ +e);
by =dgg =0 —1/,(1 +e),
dy = dyp =dyg =1, o1 (B) = J1(B)/ EJa" (8),

Ky (ka) [~ Ky (kb) [a(ka) [ Ky (ka) Iy (kb)] 3
B = Faky (ka) (1 =Ky (kb) I (ka) ] Kx (ka) Iy (kb)] * (3.2

Since b > @, B < 0 for all values of ke and kb,
For long waves (x < 1), ¢(§) = 1 + gz/‘. Since

5@ Ko (E)
—EK{(E)"_[i Kuaﬂ’

we replace the Bessel functions for small values of the argument by

Ko® ~ — (E +0), K G =UE L E~=YE
which gives for B8
k 14ar/b2
B:——I:i-{—kzaz(]n o c)]% (3.9

in which C ~0. 577 is Euler's constant. For long wavelengths, (3.1)
becomes

pw? 1 H?
V72 zdz"2+m{i+2[i+

1+ ,12/1,2} (3. 4)

+ k2a2 <1n—k;— + Cﬂm/—b—z .

Since B < 0, the rod is always stable in the presence of bending
modes.
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